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Abstract

Distribution regression has recently attracted
much interest as a generic solution to the prob-
lem of supervised learning where labels are avail-
able at the group level, rather than at the individ-
ual level. Current approaches, however, do not
propagate the uncertainty in observations due to
sampling variability in the groups. This effec-
tively assumes that small and large groups are
estimated equally well, and should have equal
weight in the final regression. We account for
this uncertainty with a Bayesian distribution re-
gression formalism, improving the robustness
and performance of the model when group sizes
vary. We frame our models in a neural network
style, allowing for simple MAP inference using
backpropagation to learn the parameters, as well
as MCMC-based inference which can fully prop-
agate uncertainty. We demonstrate our approach
on illustrative toy datasets, as well as on a chal-
lenging problem of predicting age from images.

1 INTRODUCTION

Distribution regression is the problem of learning a regres-
sion function from samples of a distribution to a single set-
level label. For example, we might attempt to infer the
sentiment of texts based on word-level features, to predict
the label of an image based on small patches, or even per-
form traditional parametric statistical inference by learning
a function from sets of samples to the parameter values.

Recent years have seen wide-ranging applications of this
framework, including inferring summary statistics in Ap-
proximate Bayesian Computation (Mitrovic et al., 2016),
estimating Expectation Propagation messages (Jitkrittum
et al., 2015), predicting the voting behaviour of demo-
graphic groups (Flaxman et al., 2015, 2016), and learning
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the total mass of dark matter halos from observable galaxy
velocities (Ntampaka et al., 2015, 2016). Closely related
distribution classification problems also include identify-
ing the direction of causal relationships from data (Lopez-
Paz et al., 2015) and classifying text based on bags of word
vectors (Yoshikawa et al., 2014; Kusner et al., 2015).

One particularly appealing approach to the distribution re-
gression problem is to represent the input set of samples
by their kernel mean embedding (described in Section 2.1),
where distributions are represented as single points in a re-
producing kernel Hilbert space. Standard kernel methods
can then be applied for distribution regression, classifica-
tion, anomaly detection, and so on. This approach was per-
haps first popularized by Muandet et al. (2012); Szábo et al.
(2016) provided a recent learning-theoretic analysis.

In this framework, however, each distribution is simply rep-
resented by the empirical mean embedding, ignoring the
fact that large sample sets are much more precisely under-
stood than small ones. Most studies also use point esti-
mates for their regressions, such as kernel ridge regression
or support vector machines, thus ignoring uncertainty both
in the distribution embeddings and in the regression model.

1.1 Our Contributions

We propose a set of Bayesian approaches to distribution re-
gression. First, we build on a recently proposed Bayesian
nonparametric model of uncertainty in kernel mean embed-
dings (Flaxman et al., 2016), and then use a sparse repre-
sentation of the desired function in the RKHS for prediction
in the regression model. This model allows for a full ac-
count of uncertainty in the mean embedding, but requires a
point estimate of the regression function for conjugacy; we
thus use backpropagation to obtain a MAP estimate for it as
well as various hyperparameters. Alternatively, we can use
point estimates of the input embeddings but account for un-
certainty in the regression model with simple Bayesian lin-
ear regression. We then combine the treatment of the two
sources of uncertainty into a fully Bayesian model which
uses Hamiltonian Monte Carlo for efficient inference. De-
pending on the inferential goals, each model can be useful.
We demonstrate our approaches on an illustrative toy prob-
lem as well as a challenging real-world age estimation task.
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2 BACKGROUND

2.1 Problem Overview

Distribution regression is the task of learning a classifier or
a regression function that maps probability distributions to
labels. The challenge of distribution regression goes be-
yond the standard supervised learning setting: we do not
have access to exact input-output pairs since the true in-
puts, probability distributions, are observed only through
samples from that distribution:

(
{x1j}N1

j=1, y1

)
, . . . ,

(
{xnj }Nn

j=1, yn

)
, (1)

so that each bag {xij}Ni
j=1 has a label yi along with Ni indi-

vidual observations xij ∈ X . We assume that the observa-
tions {xij}Ni

j=1 are i.i.d. samples from some unobserved dis-
tribution Pi, and that the true label yi depends only on Pi.
We wish to avoid making any strong parametric assump-
tions on the Pi. For the present work, we will assume the
labels yi are real-valued; Appendix B shows an extension
to binary classification. We typically take the observation
space X to be a subset of Rp but it could easily be struc-
tured (e.g. text or images), since we access it only through
a kernel (Gärtner, 2008).

We consider the standard approach to distribution regres-
sion, which relies on kernel mean embeddings and ker-
nel ridge regression. For any positive definite kernel func-
tion k : X × X → R, there exists a unique reproduc-
ing kernel Hilbert space (RKHS) Hk, a possibly infinite-
dimensional space of functions f : X → R where evalu-
ation can be written as an inner product, and in particular
f(x) = 〈f, k(·, x)〉Hk

for all f ∈ Hk, x ∈ X .

Given a probability measure P onX , let us define the kernel
mean embedding intoHk as

µP =

∫
k (·, x)P(dx) ∈ Hk. (2)

Notice that µP serves as a high- or infinite-dimensional
vector representation of P. For the kernel mean embed-
ding of P into Hk to be well-defined, it suffices that∫ √

k(x, x)P(dx) < ∞, which is trivially satisfied for all
P if k is bounded. Analogously to the reproducing prop-
erty of RKHS, µP represents the expectation function on
Hk:

∫
h(x)P(dx) = 〈h, µP〉Hk

. For so-called characteris-
tic kernels (Sriperumbudur et al., 2010), every probability
measure has a unique embedding, and thus µP completely
determines the corresponding probability measure.

2.2 Estimating Mean Embeddings

For a set of samples {xj}nj=1 drawn iid from P, the empir-
ical estimator of µP is given by

µ̂P = µP̂ =

∫
k (·, x) P̂(dx) =

1

n

n∑

j=1

k(·, xj). (3)

This is the standard estimator used by previous distribution
regression approaches, which the reproducing property of
Hk shows us corresponds to the kernel

〈µ̂Pi, µ̂Pj〉Hk
=

1

NiNj

Ni∑

`=1

Nj∑

r=1

k(xi`, x
j
r). (4)

But (3) is an empirical mean estimator in a high- or infinite-
dimensional space, and is thus subject to the well-known
Stein phenomenon, so that its performance is dominated
by the James-Stein shrinkage estimators. Indeed, Muandet
et al. (2014) studied shrinkage estimators for mean embed-
dings, which can result in substantially improved perfor-
mance for some tasks (Ramdas and Wehbe, 2015). Flax-
man et al. (2016) proposed a Bayesian analogue of shrink-
age estimators, which we now review.

This approach consists of (1) a Gaussian Process prior
µP ∼ GP(m0, r(·, ·)) on Hk, where r is selected to en-
sure that µP ∈ Hk almost surely and (2) a normal likeli-
hood µ̂P(x) | µP(x) ∼ N (µP(x),Σ). Here, conjugacy
of the prior and the likelihood leads to a Gaussian process
posterior on the true embedding µP, given that we have ob-
served µ̂P at some set of locations x. The posterior mean
is then essentially identical to a particular shrinkage esti-
mator of Muandet et al. (2014), but the method described
here has the extra advantage of a closed form uncertainty
estimate, which we utilise in our distributional approach.
For the choice of r, we use a Gaussian RBF kernel k, and
choose either r = k or, following Flaxman et al. (2016),
r(x, x′) =

∫
k(x, z) k(z, x′) ν(dz) where ν is proportional

to a Gaussian measure. For details of our choices, and why
they are sufficient for our purposes, see Appendix A.

This model accounts for the uncertainty based on the num-
ber of samples Ni, shrinking the embeddings for small
sample sizes more. As we will see, this is essential in
the context of distribution regression, particularly when bag
sizes are imbalanced.

2.3 Standard Approaches to Distribution Regression

Following Szábo et al. (2016), assume that the probability
distributions Pi are each drawn randomly from some un-
known meta-distribution over probability distributions, and
take a two-stage approach, illustrated as in Figure 1. De-
noting the feature map k(·, x) ∈ Hk by φ(x), one uses the
empirical kernel mean estimator (3) to separately estimate
the mean of each group:

µ̂1 =
1

N1

N1∑

j=1

φ(x1j ), . . . , µ̂n =
1

Nn

Nn∑

i=1

φ(xnj ). (5)

Next, one uses kernel ridge regression (Saunders et al.,
1998) to learn a function f : Hk → R, by minimizing
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Figure 1: Each bag i is summarised by a kernel mean em-
bedding µi ∈ Hk, and a regression function f : Hk → R
is learnt to predict labels yi ∈ R. We propose a Bayesian
approach so that we can propagate uncertainty due to the
number of samples in each bag and ultimately obtain pos-
terior credible intervals, illustrated in gray.

the squared loss with an RKHS complexity penalty:

f̂ = argmin
f∈HK

∑

i

(yi − f(µ̂i))
2 + λ‖f‖2HK

.

HereK : Hk×Hk → R is a “second-level” kernel on mean
embeddings. Szábo et al. (2016) consider a variety of ker-
nels K corresponding to the Hilbert space Hk. If K is a
linear kernel on the RKHS Hk, then the resulting method
can be interpreted as a linear (ridge) regression on mean
embeddings, which are themselves nonlinear transforma-
tions of the inputs. In some cases, adding a second-level
nonlinear kernel on the RKHS can improve performance
(Muandet et al., 2012).

Naively implementing distribution regression using the ker-
nel trick is not scalable for even modestly sized datasets,
as the relevant kernel matrix over distributions has O(n2)
entries, but the computation of entry (i, j) requires time
O(NiNj). Thus many applications have relied on ver-
sions of random Fourier features (Rahimi and Recht, 2007).
In this paper we take a simpler approach and expand in
terms of landmark points drawn randomly from the ob-
servations, yielding radial basis networks (Broomhead and
Lowe, 1988) with a mean pooling operation to construct
the mean embedding.

3 RELATED WORK

As previously mentioned, Szábo et al. (2016) provides
a thorough learning-theoretic analysis of the regression

model discussed in Section 2.3. This formalism consid-
ering a kernel method on distributions using their embed-
ding representations, or various scalable approximations
to it, has been widely applied (e.g. Muandet et al., 2012;
Yoshikawa et al., 2014; Flaxman et al., 2015; Jitkrittum
et al., 2015; Lopez-Paz et al., 2015; Mitrovic et al., 2016).
There are also several other notions of similarities on distri-
butions in use (not necessarily falling within the framework
of kernel methods and RKHSs), as well as local smoothing
approaches, mostly based on estimates of various probabil-
ity metrics (Moreno et al., 2003; Jebara et al., 2004; Póczos
et al., 2011; Oliva et al., 2013; Poczos et al., 2013; Kusner
et al., 2015). For a partial overview, see the recent thesis of
Sutherland (2016).

Other related problems of learning on instances with
group-level labels include learning with label proportions
(Quadrianto et al., 2009; Patrini et al., 2014), ecological
inference (King, 1997; Gelman et al., 2001), pointillistic
pattern search (Ma et al., 2015), multiple instance learning
(Dietterich et al., 1997; Kück and de Freitas, 2005; Zhou
et al., 2009; Krummenacher et al., 2013) and learning with
sets (Zaheer et al., 2017).1

There have also been some Bayesian approaches in re-
lated contexts, though most do not follow our setting where
the label is a function of the underlying distribution rather
than the set of observed instances. Kück and de Freitas
(2005) consider an MCMC method with group-level la-
bels but focus on individual-level classifiers, while Jack-
son et al. (2006) use hierarchical Bayesian models on a
combination of individual-level and aggregate data for eco-
logical inference. Flaxman et al. (2015) and Jitkrittum
et al. (2015) quantify the uncertainty of the distribution re-
gression model by interpreting the kernel ridge regression
on embeddings as Gaussian Process regression. However,
Jitkrittum et al. (2015) consider embeddings of a paramet-
ric family of distributions, so there is no uncertainty in em-
bedding representations, while Flaxman et al. (2015) treat
empirical embeddings as fixed inputs to the learning prob-
lem.

4 OUR MODELS

We propose three different Bayesian models, with each
model encoding different types of uncertainty. We begin
with a non-Bayesian RBF network formulation of the stan-
dard approach to distribution regression as a baseline, be-
fore refining this approach to better propagate uncertainty
in bag size, as well as model parameters.

4.1 Base Model

Our RBF network formulation is based on a variation on
the approach of Broomhead and Lowe (1988), Law et al.

1For more, also see giorgiopatrini.org/nips15workshop.

http://giorgiopatrini.org/nips15workshop
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Xi ∈ RNi×p

Landmarks {uℓ}d
ℓ=1 [k(Xi, u1), . . . , k(Xi, ud)]

Mean Pooling

{µ̂i}b
i=1 ∈ Rb×d

for i = 1 . . . b

φ(Xi) ∈ RNi×d

for i = 1 . . . b

Output Layer b̃ + β⊤µ̂j

∈ Rb

Square Error Loss

Figure 2: Our baseline model, a RBF network for distri-
bution regression. Xi represents the matrix of samples for
bag i, while k(Xi, u`) represents the element wise opera-
tion on each row of Xi, with b representing the batch size
for stochastic gradient descent.

(2017), and Zaheer et al. (2017). As shown in Figure 2, the
initial input is a minibatch consisting of several bags Xi,
each containing Ni points. Each point is then converted to
an explicit featurisation, taking the role of φ in (5), by a
radial basis layer: each point xij ∈ Rp is mapped to

φ(xij) = [k(xij , u1), . . . , k(xij , ud)]
> ∈ Rd

where u = {u`}d`=1 are landmark points. A mean pool-
ing layer yields the estimated mean embedding µ̂i corre-
sponding to each of the bags j represented in the minibatch,
where µ̂i = 1

Ni

∑Ni

j=1 φ(xij).2 Finally, a fully connected
output layer gives real-valued labels ŷi = βTµ̂i + b. As a
loss function we use the mean square error 1

n

∑
i(ŷi−yi)2.

For learning, we use backpropagation with the Adam opti-
mizer (Kingma and Ba, 2015). To regularise the network,
we use early stopping on a validation set, as well as an L2

penalty corresponding to a normal prior on β.

4.2 Mean Shrinkage Pooling Model

A shortcoming of the base model, and of the standard ap-
proach in Szábo et al. (2016), is that it ignores uncertainty
in the first level of estimation due to varying number of
samples in each bag. Ideally we would estimate not just the
mean embedding per bag, but also a measure of the sample
variance, in order to propagate this information regarding
uncertainty from the bag size through the model. Bayesian
tools provide a natural framework for this problem.

We can use the Bayesian nonparametric prior over kernel
mean embeddings (Flaxman et al., 2016) described in Sec-

2For implementation, we stack all of the bags Xi into a sin-
gle matrix of size

∑
j Nj × d for the first layer, then implement

pooling via sparse matrix multiplication.

Xi ∈ RNi×p

Landmarks u = {uℓ}d
ℓ=1 [k(Xi, u1), . . . , k(Xi, ud)]

Mean Pooling

{µ̂i}b
i=1 ∈ Rb×d

Posterior Of Embedding

N
(
R (R + Σi/Ni)

−1µ̂i, R − R (R + Σi/Ni)
−1R

)

N (α⊤R (R + Σi/Ni)
−1µ̂i,

for i = 1 . . . b

α⊤ (
R − R (R + Σi/Ni)

−1R
)
α + σ2)

Predictive Distribution

µi ∼ GP (0, r(·, ·))

yi | µi, α ∼ N
(
α⊤µi(u), σ2

)

for i = 1 . . . b

MAP Objective J(α) = log
[
p(α)

∏b
i=1 p(yi|Xi, α)

]

α ∼ N
(
0, ρ2K−1

)

for i = 1 . . . b

φ(Xi) ∈ RNi×d

for i = 1 . . . b

Figure 3: Our mean shrinkage pooling model, for this di-
agram, we have take m0 = 0, η = 1 and u = z, so that
R = Rz = Rzz, and Kz = K.

tion 2.2, and observe the empirical embeddings at the land-
mark points ui. For ui, we take a fixed set of landmarks,
which we can choose via k-means clustering (in a simi-
lar spirit to Zhang and Kwok, 2010) or sample without
replacement. Using the conjugacy of the model, and the
Gaussian process prior µi ∼ GP(m0, ηr(., .)), we obtain
a closed form posterior Gaussian process whose evaluation
at points h = {hs}nh

s=1 is:

µi(h) | xi ∼ N
(
Rh (R+ Σi/Ni)

−1
(µ̂i −m0) +m0,

Rhh −Rh (R+ Σi/Ni)
−1
R>h

)

where Rst = ηr(us, ut), (Rhh)st = ηr(hs, ht), (Rh)st =
ηr(hs, ut), and xi denotes the set {xij}Ni

j=1. We take the
prior mean m0 to be the average of the µ̂i; under a lin-
ear kernel K, this means we shrink predictions towards the
mean prediction. Note η essentially controls the strength of
the shrinkage: a smaller η means we shrink more strongly
towards m0. We take Σi to be the average of the empirical
covariance of {ϕ(xij)}Ni

j=1 across all bags, to avoid poor es-
timation of Σi for smaller bags. Some more intuition about
the behaviour of this estimator can be found in Appendix
C.

Now, supposing we have normal observation error σ2, and
use a linear kernel as our second level kernel K, we have:

yi | µi, f ∼ N
(
〈f, µi〉Hk

, σ2
)

(6)

where f ∈ Hk. Clearly, this is difficult to work with;
hence we parameterise f as f =

∑s
`=1 α`k(·, z`), where

z = {z`}s`=1 is a set of landmark points for f , which we
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can learn or fix. (Appendix D gives a motivation for this
approximation using the representer theorem.) Using the
reproducing property, our likelihood model becomes:

yi | µi, α ∼ N
(
αTµi(z), σ2

)
(7)

where µi(z) = [µi(z1), . . . , µi(zs)]
>. For fixed α and z

we can analytically integrate out the dependence on µi, and
the predictive distribution of a bag label becomes

yi | xi, α ∼ N (ξαi , ν
α
i )

ξαi = α>Rz

(
R+

Σi
Ni

)
−1(µ̂i −m0) + αTm0

ναi = αT

(
Rzz −Rz

(
R+

Σi
Ni

)−1
RT

z

)
α+ σ2.

Adding the prior α ∼ N (0, ρ2K−1z ), where Kz is the ker-
nel matrix for k on z, gives us the standard regularisation
on f of ‖f‖2Hk

. Our MAP objective is:

1

2

n∑

i=1

{
log ναi +

(yi − ξαi )
2

ξαi

}
+
αTKzα

2ρ2
.

We can use backpropagation to learn the parameters α, σ,
and if we wish η, z, and any kernel parameters. The full
model is illustrated in Figure 3. This Bayesian approach
allows us to directly encode uncertainty based on bag size
in the objective function, and provides predictions with un-
certainty intervals.

4.3 Bayesian Linear Regression Model

An alternative approach to encode uncertainty in the model
is to encode uncertainty over regression parameters β only,
with the following model:

β ∼ N (0, ρ2) yi | xi, β ∼ N (βTµ̂i, σ
2)

which is essentially Bayesian linear regression on the
empirical mean embeddings. Here, we are working di-
rectly with the finite-dimensional µ̂i, unlike the infinite-
dimensional µi before. Due to the conjugacy of the model,
we can easily obtain the predictive distribution yi | xi,
integrating out the uncertainty over β. This again pro-
vides us uncertainty intervals for the predictions yi. For
model tuning, we can maximise the model evidence, i.e.
the marginal log-likelihood (see Bishop (2006) for details),
and use backpropagation through the network to learn σ
and ρ and any kernel parameters of interest.3

4.4 Bayesian Distribution Regression

From a modelling perspective, it is natural to combine the
two Bayesian approaches above, fully propagating uncer-

3Note that unlike the models above, here we cannot do mini-
batch stochastic gradient descent, as the marginal log-likelihood
does not decompose for each individual data point.

tainty in estimation of the mean embedding and of the re-
gression coefficients α. Unfortunately, conjugate Bayesian
inference is no longer available. Thus, we consider a
Markov Chain Monte Carlo (MCMC) sampling based ap-
proach, using Hamiltonian Monte Carlo (HMC) for effi-
cient inference. Whereas inference above used gradient
descent to maximise the marginal likelihood, with the gra-
dient calculated using automatic differentiation, here we
use automatic differentiation to calculate the gradient of the
joint log-likelihood and follow this gradient as we perform
sampling over the parameters we wish to infer.

We can still exploit the conjugacy of the mean shrink-
age layer, obtaining closed form expressions for the pos-
terior over the mean embeddings. Conditional on the mean
embeddings, we have a Bayesian linear regression model
with parameters α which we sample with HMC, specifi-
cally NUTS (Hoffman and Gelman, 2014; Stan Develop-
ment Team, 2014). An implementation of our Bayesian
Distribution Regression (BDR) model in Stan is provided
in Appendix E.

5 EXPERIMENTS

We will now demonstrate our various Bayesian approaches:
the mean-shrinkage pooling method with r = k (shrink-
age) and with r(x, x′) =

∫
k(x, z)k(z, x′)ν(dz) for ν pro-

portional to a Gaussian measure (shrinkageC), Bayesian
linear regression (BLR), and the full Bayesian distribution
regression model with r = k (BDR).

We first demonstrate the characteristics of our models on
a synthetic dataset, and then evaluate them on a real life
age prediction problem. Throughout, for simplicity, we
take u = z, i.e. R = Rz = Rzz, and Kz = K — al-
though u and z could be different, with z learnt. Here k
is taken to be the standard RBF kernel. For all our ex-
periments, in the shrinkage, shrinkageC, radial and BLR
network, we tune the learning rate, number of landmarks,
bandwidth of the kernel and regularisation parameters on
a validation set, and learn any other parameters. Similarly,
for BDR, we place weakly informative normal priors (trun-
cated at zero for non-negative parameters) as detailed in
Appendix E, and tune via a validation set the number of
landmarks, bandwidth of the kernel, and prior parameters.

5.1 Gamma Synthetic Data

We create a synthetic dataset by repeatedly sampling from
the following hierarchical model:

yi ∼ Uniform(4, 8)

[
xij
]
`
| yi iid∼ 1

yi

[
Γ

(
yi
2
,

1

2

)]
+ ε for j ∈ [Ni], ` ∈ [5].

Here yi is the label for the ith bag, and each xij ∈ R5

has entries i.i.d. according to the given gamma distribution,
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Figure 4: Top: negative log-likelihood. Bottom: mean-
squared error. For context, performance of the Bayes-
optimal predictor is also shown, and for NLL ‘uniform’
shows the performance of a uniform prediction on the pos-
sible labels. For MSE, the constant overall mean label pre-
dictor achieves about 1.3.

scaled down by yi so as to have unit mean. ε is an added
noise term which differs for the two experiments below.

In these experiments, we generate 1 000 bags for training,
500 bags for a validation set for parameter tuning, 500 bags
to use for early-stopping of the models, and 1 000 bags for
testing. Here, the landmark points u are chosen via k-
means (fixed across all models). For context, we also show
results of the Bayes-optimal model, which gives true poste-
riors according to the correct data-generating process; this
is the best performance any model could hope to achieve.

Varying bag size: Uncertainty in the inputs. In order
to study the behaviour of our models with varying bag size,
we fix four sizes Ni ∈ {5, 20, 100, 1 000}. For each gener-
ated dataset, 25% of the bags have Ni = 20, and 25% have
Ni = 100. Among the other half of the data, we vary the
ratio of Ni = 5 and Ni = 1 000 bags to demonstrate our
methods’ efficacy at dealing with varied bag sizes: we let
s5 be the overall percentage of bags with Ni = 5, ranging
from s5 = 0 (in which case no bags have size Ni = 5) to
s5 = 50 (in which case 50% of the overall bags have size
Ni = 5). Here we do not add additional noise: ε = 0.

Results are shown in Figure 4. For context, we also show
the results of the Bayes-optimal model based on the true
generating distribution. Note that our learning models,
which treat the inputs as five-dimensional, fully nonpara-
metric distributions, are at a substantial disadvantage even
in the way they view the data compared to this true model.

BDR and shrinkage methods, which take into account bag
size uncertainty, perform well here compared to the other
methods. The full BDR model slightly outperforms the
shrinkage model in both likelihood and in mean-squared
error. We also see that the choice of r affects the results; in
this case, taking r = k performs somewhat better.

Figure 5 demonstrates in more detail the difference be-
tween these models. It shows test set predictions of each
model on the bags of different sizes. Here, we can see
explicitly that the shrinkage and BDR models are able to
take into account the bag size, with decreasing variance
for larger bag sizes, while the BLR model just outputs the
same variance for all bag size predictions. Furthermore, the
shrinkange and BDR models can shrink their predictions
towards the mean in the smaller bag sizes without doing so
for the larger bags: this improves performance on the small
bags while still allowing for good predictions on large bags,
contrary to the BLR model.

Fixed bag size: Uncertainty in the regression model.
The previous experiment showed the efficacy of the shrink-
age estimator in our models, but demonstrated little gain
from posterior inference for regression weights β over their
MAP estimates, i.e. there is no discernible improvement of
BLR over RBF network. To isolate the effect of quantify-
ing uncertainty in the regression model, we now consider
the case where there is no variation in bag size at all and
normal noise is added onto the observations. In particular
we take Ni = 1000 and ε ∼ N (0, 1) and use the same ex-
perimental setup as before, sampling landmarks randomly
from the training set.

Results are shown in Table 1 (over 10 simulation of the
dataset). Here, BLR or BDR outperform all other methods
on all runs, highlighting that uncertainty in the regression
model is also important for predictive performance. We
note that the BDR method performs well in this regime as
well as in the previous one.

5.2 IMDb-WIKI: Age Estimation

We now demonstrate our methods on a celebrity age es-
timation problem, using the IMDb-WIKI database (Rothe
et al., 2016) which consists of 397 949 images of 19 545
celebrities4, with corresponding age labels. This database
was constructed by crawling IMDb for images of its most

4We used only the IMDb images, and removed some implau-
sible images, including one of a cat and several of people with
supposedly negative age, or ages of several hundred years.
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Figure 5: Predictions for the varying bag size experiment of Section 5.1. Each column corresponds to a single prediction
method. Each point in an image represents a single bag, with its horizontal position the true label yi, and its vertical
position the predicted label. The black lines show theoretical perfect predictions. The rows represent different subsets of
the data: the first row shows all bags, the second only bags withNi = 5, and so on. Colors represent the predictive standard
deviation of each point. Note that vertical axis limits and color scales are shared across each row.
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Table 1: Results on the synthetic dataset, over 10 runs
(standard deviations in parentheses). BLR/BDR performs
best on all runs in both metrics.

METHOD MSE NLL

Optimal 0.170 (0.009) 0.401 (0.018)
RBF network 0.235 (0.014) N/A
shrinkage 0.237 (0.014) 0.703 (0.027)
shrinkageC 0.236 (0.013) 0.700 (0.029)
BLR 0.228 (0.012) 0.681 (0.025)
BDR 0.227 (0.012) 0.683 (0.025)

Table 2: Results on the grouped IMDb-WIKI dataset over
ten runs (standard deviations in parentheses). Here shrink-
age performs the best across all 10 runs in both metrics.

METHOD RMSE NLL

CNN 10.25 (0.22) 3.80 (0.034)
RBF network 9.51 (0.20) N/A
shrinkage 9.28 (0.20) 3.54 (0.021)
BLR 9.55 (0.19) 3.68 (0.021)

popular actors and directors, with potentially many images
for each celebrity over time. Rothe et al. (2016) use a con-
volutional neural network (CNN) with a VGG-16 architec-
ture to perform 101-way classification, with one class cor-
responding to each ages in {0, . . . , 100}.
We take a different approach, and assume that we are given
several images of a single individual (i.e. samples from the
distribution of celebrity images), and are asked to predict
their mean age based on several pictures. For example, we
have 757 images of Brad Pitt from age 27 up to 51, while
we have only 13 images of Chelsea Peretti at ages 35 and
37. Note that 22.5% of the bags have only a single image.
We obtain 19 545 bags, with each bag containing between
1 and 796 images of a particular celebrity, with the corre-
sponding bag label calculated from the average of the age
labels of the images inside each bag.

In particular, we use the representation ϕ(x) learnt by the
CNN in Rothe et al. (2016), where ϕ(x) : R256×256 →
R4096, from the pixel space of images to the representation
before the output of the CNN. With these new representa-
tions, we can now treat them as inputs to our radial basis
network, shrinkage (taking r = k here) and BLR models.
Although we can also use the full BDR model here, due
to the computational time and memory required to perform
proper parameter tuning, we relegate this to a later study.

Here, we use 9 820 bags for training, 2 948 bags for early
stopping, 2 946 for validation and 3 928 for testing. We
tune number of landmarks, bandwidth, regularisation and

learning rate via the validation set, and learn the other
parameters. Landmarks are sampled without replacement
from the training set.

We repeat the experiment on 10 different splits of the data,
and report the results in Table 2. The baseline CNN results
give performance by averaging the predictive distribution
from the model of Rothe et al. (2016) for each image of a
bag; note that this model was trained on all of the images
used here. From Table 2, we can see that shrinkage has
the best performance here; in fact, it outperforms all other
methods in all 10 splits of the dataset, in both metrics. This
demonstrates that modeling bag size uncertainty is vital.

6 CONCLUSION
Supervised learning on groups of observations using ker-
nel mean embeddings typically disregards sampling vari-
ability within groups. To handle this problem, we con-
struct Bayesian approaches to modelling kernel mean em-
beddings within a regression model, and investigate advan-
tages of uncertainty propagation within different compo-
nents of the resulting distribution regression. The ability
to take into account the uncertainty in mean embedding es-
timates is demonstrated to be key for constructing mod-
els with good predictive performance when group sizes are
highly imbalanced. We also demonstrate that the results of
a complex neural network model for age estimation can be
improved by the shrinkage model.

Our models employ a neural network formulation, in or-
der to provide more expressive feature representations and
learn discriminative embeddings. Doing so makes our
model easy to extend to more complicated featurisations
than the simple RBF network used here. By training with
backpropagation, or via approximate Bayesian methods
such as variational inference, we can easily ‘learn the ker-
nel’ within our framework, for example learning weights
in the deep network-based kernel of Section 5.2 rather than
using a pre-trained model. We can also apply our networks
to structured settings, learning regression functions on sets
of images, audio, or text. Such models naturally fit into the
empirical Bayes framework.

On the other hand, we might extend our model to more
Bayesian feature learning by placing priors over the kernel
hyperparameters, building on classic work on variational
approaches (Barber and Schottky, 1998) and fully Bayesian
inference (Andrieu et al., 2001) in RBF networks. Such
approaches are also possible using other featurisations, e.g.
random Fourier features (Oliva et al., 2015).

Future distribution regression approaches will need to ac-
count for uncertainty in observation of the distribution. Our
methods provide a strong, generic building block to do so.
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Milan Lukić and Jay Beder. Stochastic processes with sam-
ple paths in reproducing kernel hilbert spaces. Trans-
actions of the American Mathematical Society, 353(10):
3945–3969, 2001.

Yifei Ma, Dougal J. Sutherland, Roman Garnett, and Jeff
Schneider. Active pointillistic pattern search. In AIS-
TATS, 2015.

J. Mitrovic, D. Sejdinovic, and Y.W. Teh. DR-ABC:
Approximate Bayesian Computation with Kernel-Based
Distribution Regression. In ICML, pages 1482–1491,
2016.

Pedro J Moreno, Purdy P Ho, and Nuno Vasconcelos. A
Kullback-Leibler divergence based kernel for SVM clas-
sification in multimedia applications. In NIPS, 2003.

Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo,
and Bernhard Schölkopf. Learning from distribu-
tions via support measure machines. In NIPS, 2012.
arXiv:1202.6504.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperum-
budur, Arthur Gretton, and Bernhard Schoelkopf. Kernel
mean estimation and stein effect. In ICML, 2014.

Michelle Ntampaka, Hy Trac, Dougal J. Sutherland,
Nicholas Battaglia, Barnabás Póczos, and Jeff Schnei-
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Jeff Schneider, and Eric P Xing. Bayesian non-
parametric kernel-learning. Technical report, 2015.
arXiv:1506.08776.

Giorgio Patrini, Richard Nock, Tiberio Caetano, and Paul
Rivera. (Almost) no label no cry. In NIPS. 2014.

Natesh S Pillai, Qiang Wu, Feng Liang, Sayan Mukherjee,
and Robert L Wolpert. Characterizing the function space
for bayesian kernel models. Journal of Machine Learn-
ing Research, 8(Aug):1769–1797, 2007.
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A Choice of r(·, ·) to ensure µP ∈ Hk

We need to choose an appropriate covariance function r, such that µP ∈ Hk, where µP ∼ GP(0, r(·, ·)). In particular, it is
for infinite-dimensional RKHSs not sufficient to define r(·, ·) = k(·, ·), as draws from this particular prior are no longer in
Hk (Wahba, 1990) (but see below). However, we can construct

r(x, y) =

∫
k(x, z)k(z, y)ν(dz) (8)

where ν is any finite measure on X . This then ensures µP ∈ Hk with probability 1 by the nuclear dominance (Lukić and
Beder, 2001; Pillai et al., 2007) for any stationary kernel k. In particular, Flaxman et al. (2016) provides details when k is
a squared exponential kernel defined by

k(x, y) = exp(−1

2
(x− y)>Σ−1k (x− y)) x, y ∈ Rp

and ν(dz) = exp
(
− ||z||

2
2

2`2

)
dz, i.e. it is proportional to a Gaussian measure on Rd, which provides r(·, ·) with a non-

stationary component. In this paper, we take Σk = σ2Ip, where σ2 and ` are tuning parameters, or parameters that we
learn.

Here, the above holds for a general set of stationary kernels, but note that by taking a convolution of a kernel with itself,
it might make the space of functions that we consider overly smooth (i.e. concentrated on a small part of Hk). In this
work, however, we consider only the Gaussian RBF kernel k. In fact, recent work (Steinwart, 2017, Theorem 4.2) actually
shows that in this case, the sample paths almost surely belong to (interpolation) spaces which are infinitesimally larger
than the RKHS of the Gaussian RBF kernel. This suggests that we can choose r to be an RBF kernel with a length scale
that is infinitesimally bigger than that of k; thus, in practice, taking r = k would suffice and we do observe that it actually
performs better (Fig. 4).

B Framework for Binary Classification

Suppose that our labels yi ∈ {0, 1}, i.e. we are in a binary classification framework. Then a simple approach to accounting
for uncertainty in the regression parameters is to use bayesian logistic regression, putting priors on β, i.e.

β ∼ N (0, ρ2)

yi ∼ Ber(πi), where log

(
πi

1− πi

)
= β>µ̂i

however for the mean shrinkage pooling model, if we use the above yi |µi, α, we would not be able to obtain an analytical
solution for p(yi|xi, α). Instead we use the probit link function, as given by:

Pr(yi = 1|µi, α) = Φ
(
α>µi(z)

)

where Φ denotes the Cumulative Distribution Function (CDF) of a standard normal distribution, with µi(z) =
[µi(z1), . . . , µi(zs)]

>. Then as before we have

µi(z) | xi ∼ N (Mi, Ci)

with Mi and Ci as defined in section 4.2. Hence, as before

Pr(yi = 1|xi, α) =

∫
Pr(yi = 1|µi, α)p(µi(z)|xi)dµi(z)

= c

∫
Φ(α>µi(z)) exp{−1

2
(µi(z)−Mi)

>C−1i (µi(z)−Mi)}dµi(z)

(with li = µi(z)−Mi) = c

∫
Φ(α>(li +Mi)) exp{−1

2
(li)
>C−1i (li)}dli

= Pr(Y ≤ α>(li +Mi))
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Note here Y ∼ N (0, 1) and li ∼ N (0,Σi) Then expanding and rearranging

Pr(yi = 1|xi, α) = Pr(Y − α>li ≤ α>Mi)

Note that since Y and li independent normal r.v., Y − α>li ∼ N (0, 1 + α>Ciα
>). Let T be standard normal, then we

have:

Pr(yi = 1|xi, α) = Pr(
√

1 + α>Ciα T ≤ α>Mi)

= Pr(T ≤ α>Mi√
1 + α>Ciα

)

= Φ

(
α>Mi√

1 + α>Ciα

)

Hence, we also have:

Pr(yi = 0|xi, α) = 1− Φ

(
α>Mi√

1 + α>Ciα

)

Now placing the prior α ∼ N (0, ρ2K−1z ), we have the following MAP objective:

J(α) = log

[
p(α)

n∏

i=1

p(yi|xi, α)

]

=

n∑

i=1

(1− yi) log(1− Φ

(
α>Mi√

1 + α>Ciα

)
)

+yi log(Φ

(
α>Mi√

1 + α>Ciα

)
) +

1

ρ2
α>Kzα

Since we have an analytical solution for Pr(yi = 0|xi, α), we can also use this in HMC for BDR.

C Some more intuition on the shrinkage estimator

In this section, we provide some intuition behind the shrinkage estimator in section 4.2. Here, for simplicity, we choose
Σi = τ2I for all bag i, and m0 = 0, and consider the case where z = u, i.e. R = Rz = Rzz. We can then see that if R
has eigendecomposition UΛUT , with Λ = diag(λk), the posterior mean is

U diag

(
λk

λk + τ2/Ni

)
UT (µ̂i),

so that large eigenvalues, λk � τ2/Ni, are essentially unchanged, while small eigenvalues, λk � τ2/Ni, are shrunk
towards 0. Likewise, the posterior variance is

U diag

(
λk −

λ2k
λk + τ2

Ni

)
UT = U diag

(
1

Ni

τ2 + 1
λk

)
UT ;

its eigenvalues also decrease as Ni/τ2 increases.

D Alternative Motivation for choice of f

Here we provide an alternative motivation for the choice of f =
∑k
s=1 αsk(·, zs). First, consider the following Bayesian

model with a linear kernel K on µi, where f : Hk → R:

yi | µi, f ∼ N
(
f(µi), σ

2
)
.
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Now considering the log-likelihood of {µ, Y } = {µi, yi}ni=1 (supposing we have these exact embeddings), we obtain:

log p(Y |µ, f) =

n∑

i=1

− 1

2σ2
(yi − f(µi))

2

To avoid over-fitting, we place a Gaussian prior on f , i.e. − log p(f) = λ||f ||Hk
+ c. Minimizing the negative log-

likelihood over f ∈ Hk, we have:

f∗ = argminf∈Hk

n∑

i=1

1

2σ2
(yi − f(µi))

2 + λ||f ||Hk

Now this is in the form of an empirical risk minimisation problem. Hence using the representer theorem (Schölkopf et al.,
2001), we have that:

f =

n∑

j=1

γjK(., µj)

i.e. we have a finite-dimensional problem to solve. Thus since K is a linear kernel:

yi | µi, {µj}nj=1, γ ∼ N




n∑

j=1

γj〈µi, µj〉Hk
, σ2


 .

where 〈µi, µj〉Hk
can be thought of as the similarity between distributions.

Now we have the same GP posterior as in Section 4.2, and we would like to compute p(yi|xi, γ). This suggests we need to
integrate out µ1, . . .µn. But it is unclear how to perform this integration, since the µi follow Gaussian process distributions.
Hence we can take an approximation to f , i.e. f =

∑k
s=1 αsk(·, zs), which would essentially give us a dual method with

a sparse approximation to f .

E Stan source code for Bayesian Distribution Regression model

data {
int d; // dimensionality of the observed data
int p; // number of bags
int ntrain; // 1 ... ntrain are for training and ntrain+1 ... p are for testing

matrix[p,d] mu;
matrix[d,d] Sigma[p];
vector[ntrain] y; // labels
vector[p] ytrue; // labels (train+test)

}
parameters {

vector[d] beta;

real<lower=0> sigma;
real alpha;
real<lower=0> kappa;

}
transformed parameters {

vector[p] mus;
vector[p] sds;

for(j in 1:p) {
mus[j] = alpha + mu[j] * beta;
sds[j] = sqrt(quad_form(Sigma[j],beta) + sigma);
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}
}
model {

for(j in 1:ntrain)
y[j] ∼ normal(mus[j],sds[j]);

alpha ∼ normal(0,2);
beta ∼ normal(0,kappa);
kappa ∼ normal(0,2);
sigma ∼ normal(0,2);

}
generated quantities {

vector[p] yhat;
vector[p] lp;
for(j in 1:p) {

yhat[j] = normal_rng(mus[j],sds[j]);
lp[j] = normal_lpdf(ytrue[j] | mus[j],sds[j]);

}
}
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