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Abstract

Bayesian optimisation is a popular technique for hyperparameter learning but typi-
cally requires initial exploration even in cases where similar prior tasks have been
solved. We propose to transfer information across tasks using learnt representations
of training datasets used in those tasks. This results in a joint Gaussian process
model on hyperparameters and data representations. Representations make use of
the framework of distribution embeddings into reproducing kernel Hilbert spaces.
The developed method has a faster convergence compared to existing baselines, in
some cases requiring only a few evaluations of the target objective.

1 Introduction

Hyperparameter selection is an essential part of training a machine learning model and a judicious
choice of values of hyperparameters such as learning rate, regularisation, or kernel parameters is what
often makes the difference between an effective and a useless model. To tackle the challenge in a
more principled way, the machine learning community has been increasingly focusing on Bayesian
optimisation (BO) [Snoek et al., 2012], a sequential strategy to select hyperparameters θ based on
past evaluations of model performance. In particular, a Gaussian process (GP) [Rasmussen, 2004]
prior is used to represent the underlying accuracy f as a function of the hyperparameters θ, whilst
different acquisition functions α(θ; f) are proposed to balance between exploration and exploitation.
This has been shown to give superior performance compared to traditional methods [Snoek et al.,
2012] such as grid search or random search. However, BO suffers from the so called ‘cold start’
problem [Poloczek et al., 2016, Swersky et al., 2013], namely, initial observations of f at different
hyperparameters are required to fit a GP model. Various methods [Swersky et al., 2013, Feurer
et al., 2018, Springenberg et al., 2016, Poloczek et al., 2016] were proposed to address this issue
by transferring knowledge from previously solved tasks, however, initial random evaluations of the
models are still needed to consider the similarity across tasks. This might be prohibitive: evaluations
of f can be computationally costly and our goal may be to select hyperparameters and deploy our
model as soon as possible. We note that treating f as a black-box function, as is often the case in
BO, is ignoring the highly structured nature of hyperparameter learning – it corresponds to training
specific models on specific datasets. We make steps towards utilizing such structure in order to
borrow strength across different tasks and datasets.
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Contribution. We consider a scenario where a number of tasks have been previously solved and we
propose a new BO algorithm, making use of the embeddings of the distribution of the training data
[Blanchard et al., 2017, Muandet et al., 2017]. In particular, we propose a model that can jointly
model all tasks at once, by considering an extended domain of inputs to model accuracy f , namely
the distribution of the training data PXY , sample size of the training data s and hyperparameters
θ. Through utilising all seen evaluations from all tasks and meta-information, our methodology
is able to learn a useful representation of the task that enables appropriate transfer of information
to new tasks. As part of our contribution, we adapt our modelling approach to recent advances in
scalable hyperparameter transfer learning [Perrone et al., 2018] and demonstrate that our proposed
methodology can scale linearly in the number of function evaluations. Empirically, across a range of
regression and classification tasks, our methodology performs favourably at initialisation and has a
faster convergence compared to existing baselines – in some cases, the optimal accuracy is achieved
in just a few evaluations.

2 Related Work

The idea of transferring information from different tasks in the context of hyperparameter learning
has been studied in various settings [Swersky et al., 2013, Feurer et al., 2018, Springenberg et al.,
2016, Poloczek et al., 2016, Wistuba et al., 2018, Perrone et al., 2018]. Amongst this literature,
one common feature is that the similarity across tasks is captured only through the evaluations of f .
This implies that sufficient evaluations from the task of interest is necessary, before we can transfer
information. This is problematic, if model training is computationally expensive and our goal is to
employ our model as quickly as possible. Further, the hyperparameter search for a machine learning
model in general is not a black-box function, as we have additional information available: the dataset
used in training. In our work, we aim to learn feature representation of training datasets in-order to
yield good initial hyperparameter candidates without having seen any evaluations from our target
task.

While such use of such dataset features, called meta-features, has been previously explored, current
literature focuses on handcrafted meta-features1. These strategies are not optimal, as these meta-
features can be be very similar, while having very different fs, and vice versa. In fact a study on
OpenML [Vanschoren et al., 2013] meta-features have shown that the optimal set depends on the
algorithm and data [Todorovski et al., 2000]. This suggests that the reliance on these features can
have an adverse effect on exploration, and we give an example of this in section 5. To avoid such
shortcomings, given the same input space, our algorithm is able to learn meta-features directly from
the data, avoiding such potential issues. Although [Kim et al., 2017] previously have also proposed
to learn the meta-feature representations (for image data specifically), their proposed methodology
requires the same set of hyperparameters to be evaluated for all previous tasks. This is clearly a
limitation considering that different hyperparameter regions will be of interest for different tasks, and
we would thus require excessive exploration of all those different regions under each task. To utilise
meta-features, [Kim et al., 2017] propose to warm-start Bayesian optimisation [Gomes et al., 2012,
Reif et al., 2012, Feurer et al., 2015] by initialising with the best hyperparameters from previous tasks.
This also might be sub-optimal as we neglect non-optimal hyperparameters that can still provide
valuable information for our new task, as we demonstrate in section 5. Our work can be thought of to
be similar in spirit to [Klein et al., 2016], which considers an additional input to be the sample size s,
but do not consider different tasks corresponding to different training data distributions.

3 Background

Our goal is to find:
θ∗target = argmaxθ∈Θf

target(θ)

where f target is the target task objective we would like to optimise with respect to hyperparameters θ.
In our setting, we assume that there are n (potentially) related source tasks f i, i = 1, . . . n, and for
each f i, we assume that we have {θik, zik}

Ni

k=1 from past runs, where zik denotes a noisy evaluation
of f i(θik) and Ni denotes the number of evaluations of f i from task i. Here, we focus on the case

1A comprehensive survey on meta-learning and handcrafted meta-features can be found in [Hutter et al.,
2019, Ch.2], [Feurer et al., 2015]
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that f i(θ) is some standardised accuracy (e.g. test set AUC) of a trained machine learning model
with hyperparameters θ and training data Di = {xi`, yi`}

si
`=1, where xi` ∈ Rp are the covariates, yi`

are the labels and si is the sample size of the training data. For a general framework, Di is any input
to f i apart from θ (can be unsupervised) – but following a typical supervised learning treatment, we
assume it to be an i.i.d. sample from the joint distribution PXY . For each task we now have:

(f i, Di = {xi`, yi`}
si
`=1, {θ

i
k, z

i
k}
Ni

k=1), i = 1, . . . n

Our strategy now is to measure the similarity between datasets (as a representation of the task itself), in
order to transfer information from previous tasks to help us quickly locate θ∗target. In order to construct
meaningful representations and measure between different tasks, we will make the assumption that
xi` ∈ X and yi` ∈ Y for all i, and that throughout the supervised learning model class is the same.
While this setting might seem limiting, [Feurer et al., 2018, Poloczek et al., 2016] provides examples
of many practical applications, including ride-sharing, customer analytics model, online inventory
system and stock returns prediction. In all these cases, as new data becomes available, we might want
to either re-train our model or re-fit our parameters of the system to adapt to a specific distributional
data input.

Intuitively, this assumption implies that the source of differences of f i(θ) across i and f target(θ) is in
the data Di and Dtarget. To model this, we will decompose the data Di into the joint distribution PiXY
of the training data (Di = {xi`, yi`}

si
`=1

i.i.d.∼ PiXY ) and the sample size si for task i. Sample size2 is
important here as it is closely related to model complexity choice which is in turn closely related to
hyperparameter choice [Klein et al., 2016]. While we have chosen to model Di as P iXY and si, in
practice through simple modifications of the methodology we propose, it is possible to model Di as a
set [Zaheer et al., 2017]. Under this setting, we will consider f(θ,PXY , s), where f is a function on
hyperparameters θ, joint distribution PXY and sample size s. For example, f could be the negative
empirical risk, i.e.

f(θ,PXY , s) = −1

s

s∑
`=1

L(hθ(x`), y`)),

where L is the loss function and hθ is the model’s predictor. To recover f i and f target, we can evaluate
at the corresponding PXY and s, i.e. f i(θ) = f(θ,PiXY , si), f target(θ) = f(θ,P target

XY , starget). In this
form, we can see that similarly to assuming that f varies smoothly as a function of θ in standard
BO, this model also assumes smoothness of f across PXY as well as across s following [Klein
et al., 2016]. Here we can see that if two distributions and sample sizes are similar (with respect to
a distance of their representations that we will learn), their corresponding values of f will also be
similar. In this source and target task setup, this would suggest we can selectively utilise information
from previous source datasets evaluations {θik, zik}

Ni

k=1 to help us model f target.

4 Methodology

4.1 Embedding of data distributions

To model PXY , we will construct ψ(D), a feature map on joint distributions for each task, estimated
through its task’s training data D. Here, we will follow similarly to [Blanchard et al., 2017] which
considers transfer learning, and make use of kernel mean embedding to compute feature maps of
distributions (cf. [Muandet et al., 2017] for an overview). We begin by considering various feature
maps of covariates and labels, denoting them by φx(x) ∈ Ra, φy(y) ∈ Rb and φxy([x, y]) ∈ Rc,
where [x, y] denotes the concatenation of covariates x and label y. Depending on the different
scenarios, different quantities will be of interest.

Marginal Distribution PX . Modelling of the marginal distribution PX is useful, as we might expect
various tasks to differ in the distribution of x and hence in the hyperparameters θ, which, for example,
may be related to the scales of covariates. We also might find that x is observed with different
levels of noise across tasks. In this situation, it is natural to expect that those tasks with more noise
would perform better under a simpler, more robust model (e.g. by increasing `2 regularisation in the

2Following [Klein et al., 2016], in practice we re-scale s to [0, 1], so that the task with the largest sample size
has s = 1.
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objective function). To embed PX , we can estimate the kernel mean embedding µPX
[Muandet et al.,

2017] with D by:
ψ(D) = µ̂PX

=
1

s

s∑
`=1

φx(x`)

where ψ(D) ∈ Ra is an estimator of a representation of the marginal distribution PX .

Conditional Distribution PY |X . Similar to PX , we can also embed the conditional distribution
PY |X . This is an important quantity, as across tasks, the form of the signal can shift. For example, we
might have a latent variable W that controls the smoothness of a function, i.e. P iY |X = PY |X,W=wi

.
In a ridge regression setting, we will observe that those tasks (functions) that are less smooth would
require a smaller bandwidth σ in order to perform better. For regression, to model the conditional
distribution, we will use the kernel conditional mean operator CY |X [Song et al., 2013] estimated
with D by:

ĈY |X = Φ>y (ΦxΦ>x + λI)−1Φx = λ−1Φ>y (I − Φx(λI + Φ>x Φx)−1Φ>x )Φx

where Φx = [φx(x1), . . . , φx(xs)]
T ∈ Rs×a, Φy = [φy(y1), . . . , φy(ys)]

T ∈ Rs×b and λ is a
regularisation parameter that we learn. It should be noted the second equality [Rasmussen, 2004]
here allows us to avoid the O(s3) arising from the inverse. This is important, as the number of
samples s per task can be large. As ĈY |X ∈ Rb×a, we will flatten it to obtain ψ(D) ∈ Rab to
obtain a representation of PY |X . In practice, as we rarely have prior insights into which quantity is
useful for transferring hyperparameter information, we will model both the marginal and conditional
distributions together by concatenating the two feature maps above. The advantage of such an
approach is that the learning algorithm does not have to itself decouple the overall representation of
training dataset into the information about marginal and conditional distributions which is likely to
be informative.

Joint Distribution PXY . Taking an alternative and a more simplistic approach, it is also possible to
model the joint distribution PXY directly. One approach is to compute the kernel mean embedding,
based on concatenated samples [x, y], considering the feature map φxy. Alternatively, we can also
embed PXY using the cross covariance operator CXY [Gretton, 2015], estimated by D with:

ĈXY =
1

s

s∑
`=1

φx(x`)⊗ φy(y`) =
1

s
Φ>x Φy ∈ Ra×b.

where ⊗ denotes the outer product and similarly to CY |X , we will flatten it to obtain ψ(D) ∈ Rab.
An important choice when modelling these quantities is the form of feature maps φx, φy and φxy , as
these define the corresponding features of the data distribution we would like to capture. For example
φx(x) = x and φx(x) = xx> would be capturing the respective mean and second moment of the
marginal distribution Px. However, instead of defining a fixed feature map, here we will opt for a
flexible representation, specifically in the form of neural networks (NN) for φx, φy and φxy (except
φy for classification3), in a similar fashion to [Wilson et al., 2016]. To provide a better intuition
on this choice, suppose we have two task i, j and that PiXY ≈ P

j
XY (with the same sample size s).

This will imply that f i ≈ f j , and hence θ∗i ≈ θ∗j . However, the converse does not hold in general:
f i ≈ f j does not necessary imply PiXY ≈ P

j
XY . For example, regularisation hyperparameters of a

standard machine learning model are likely to be robust to rotations and orthogonal transformations
of the covariates (leading to a different PX ). Hence, it is important to define a versatile model
for ψ(D), which can yield representations invariant to variations in the training data irrelevant for
hyperparameter choice.

4.2 Modelling f

Given ψ(D), we will now construct a model for f(θ,PXY , s), given observations{
{(θik,PiXY , si), zik}

Ni

k=1

}n
i=1

, along with any observations on the target. Note that we will in-
terchangeably use the notation f to denote the model and the underlying function of interest. We will
now focus on the algorithms distGP and distBLR, with additional details to be found in Appendix A.

3For classification, we use ĈXY and a one-hot encoding for φy implying a marginal embedding per class.
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Gaussian Processes (distGP). We proceed similarly to standard BO [Snoek et al., 2012] using a GP
to model f and a normal likelihood (with variance σ2 across all tasks4) for our observations z,

f ∼ GP (µ,C) z|γ ∼ N (f(γ), σ2)

where here µ is a constant, C is the corresponding covariance function on (θ,PXY , s) and γ is a
particular instance of an input. In order to fit a GP with inputs (θ,PXY , s), we use the following C:

C({θ1,P1
XY , s1}, {θ2,P2

XY , s2}) = νkθ(θ1, θ2)kp([ψ(D1), s1], [ψ(D2), s2])

where ν is a constant, kθ and kp is the standard Matérn-3/2 kernel (with separate bandwidths across
the dimensions). For classification, we additionally concatenate the class size ratio per class, as this

is not captured in ψ(Di). Utilising
{
{(θik,PiXY , si), zik}

Ni

k=1

}n
i=1

, we can optimise µ, ν, σ2 and any

parameters in ψ(D), kθ and kp using the marginal likelihood of the GP (in an end-to-end fashion).

Bayesian Linear Regression (distBLR). While GP with its well-calibrated uncertainties have shown
superior performance in BO [Snoek et al., 2012], it is well known that they suffer from O(N3)
computational complexity [Rasmussen, 2004], where N is the total number of observations. In this
case, as N =

∑n
i=1Ni, we might find that the total number of evaluations across all tasks is too large

for the GP inference to be tractable or that the computational burden of GPs outweighs the cost of
computing f in the first place. To overcome this problem, we will follow [Perrone et al., 2018] and
use Bayesian linear regression (BLR), which scales linearly in the number of observations, with the
model given by

z|β ∼ N (Υβ, σ2I) β ∼ N (0, αI) Ψi = [ψ(Di), si]

Υ = [υ([θ1
1,Ψ1]), . . . , υ([θ1

N1
,Ψ1]), . . . , υ([θn1 ,Ψn]), . . . , υ([θnNn

,Ψn])]> ∈ RN×d

where α > 0 denotes the prior regularisation, and [·, ·] denotes concatentation. Here υ denotes a
feature map on concatenated hyperparameters θ, data embedding ψ(D) and sample size s. Following
[Perrone et al., 2018], we also employ a neural network for υ. While conceptually similar to
[Perrone et al., 2018] who fits a BLR per task, here we consider a single BLR fitted jointly on all
tasks, highlighting differences across tasks using meta-information available. The advantage of
our approach is that for a given new task, we are able to utilise directly all previous information
and one-shot predict hyperparameters without seeing any evaluations from the target task. This is
especially important when our goal might be to employ our system with only a few evaluations from
our target task. In addition, a separate target task BLR is likely to be poorly fitted given only a
few evaluations. Similar to the GP case, we can optimise α, β, σ2 and any unknown parameters in
ψ(D), υ([θ,Ψ]) using the marginal likelihood of the BLR.

4.3 Hyperparameter learning

Having constructed a model for f and optimised any unknown parameters through the marginal
likelihood, in order to construct a model for the f target, we let f target(θ) = f(θ,P target

XY , starget). Now,
to propose the next θtarget to evaluate, we can simply proceed with Bayesian optimisation on f target,
i.e. maximise the corresponding acquisition function α(θ; f target). While we adopt standard BO
techniques and acquisition functions here, note that the generality of the developed framework allows
it to be readily combined with many advances in the BO literature, e.g. Hernández-Lobato et al.
[2014], Oh et al. [2018], McLeod et al. [2018], Snoek et al. [2012], Wang et al. [2016].

Acquisition Functions. For the form of the acquisition function α(θ; f target), we will use the popular
expected improvement (EI) [Močkus, 1975]. However, for the first iteration, EI is not appropriate in
our context, as these acquisition functions can favour θs with high uncertainty. Recalling that our
goal is to quickly select ‘good’ hyperparameters θ with few evaluations, for the first iteration we
will maximise the lower confidence bound (LCB)5, as we want to penalise uncertainties and exploit
our knowledge from source task’s evaluations. While this approach works well for the GP case, for
BLR, we will use the LCB restricted to the best hyperparameters from previous tasks, as BLR with
a NN feature map does not extrapolate as well as GPs in the first iteration. For the exact forms of
these acquisition functions, implementation and alternative warm-starting approaches, please refer to
Appendix A.3.

4For different noise levels across tasks, we can allow for different σ2
i per task i in distGP and distBLR.

5Note this is not the upper confidence bound, as we want to exploit and obtain a good starting initialisation.
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Figure 1: Unsupervised toy task over 30 runs. Left: Mean of the maximum observed f target so
far (including any initialisation). Right: Mean of the similarity measure kp(ψ(Di), ψ(Dtarget)) for
distGP. For clarity purposes, the legend only shows the µi for the 3 source tasks that are similar to the
target task with µi = −0.25. It is noted the rest of the source task have µi ≈ 4.

Optimisation. We make use of ADAM [Kingma and Ba, 2014] to maximise the marginal likelihood
until convergence. To ensure relative comparisons, we standardised each task’s dataset features
to have mean 0 and variance 1 (except for the unsupervised toy example), with regression labels
normalised individually to be in [0, 1]. As the sample size per task si is likely to be large, instead
of using the full set of samples si to compute ψ(Di), we will use a different random sub-sample
of batch-size b for each iteration of optimisation. In practice, this parameter b is dependent on the
number of tasks, and the evaluation cost of f . It should be noted that a smaller batch-size b would
still provide an unbiased estimate of ψ(Di) At testing time, it is also possible to use a sub-sample
of the dataset to avoid any computational costs arising from a large

∑
i si. When retraining, we

will initialise from the previous set of parameters, hence few gradient steps are required before
convergence occurs.

Extension to other data structures. Throughout the paper, we focus on examples with x ∈ Rp.
However our formulation is more general, as we only require the corresponding feature maps to be
defined on individual covariates and labels. For example, image data can be modelled by taking
φx(x) to be a representation given by a convolutional neural network (CNN)6, while for text data, we
might construct features using Word2vec [Mikolov et al., 2013], and then retrain these representations
for hyperparameter learning setting. More broadly, we can initialize ψ(D) to any meaningful
representation of the data, believed to be useful to the selection of θ∗target. Of course, we can also
choose ψ(D) simply as a selection of handcrafted meta-features [Hutter et al., 2019, Ch. 2], in which
case our methodology would use these representations to measure similarity between tasks, while
performing feature selection [Todorovski et al., 2000]. In practice, learned feature maps via kernel
mean embeddings can be used in conjunction with handcrafted meta-features, letting data speak for
itself. In Appendix B.1, we provide a selection of 13 handcrafted meta-features that we employ as
baselines for the experiments below.

5 Experiments

We will denote our methodology distBO, with BO being a placeholder for GP and BLR versions.
For φx and φy we will use a single hidden layer NN with tanh activation (with 20 hidden and 10
output units), except for classification tasks, where we use a one-hot encoding for φy. For clarity
purposes, we will focus on the approach where we separately embed the marginal and conditional
distributions, before concatenation. Additional results for embedding the joint distribution can be
found in Appendix C.1. For BLR, we will follow [Perrone et al., 2018] and take feature map υ to be
a NN with three 50-unit layers and tanh activation. For baselines, we will consider: 1) manualBO

6This is similar to [Law et al., 2018] who embeds distribution of images using a pre-trained CNN for
distribution regression.
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Figure 2: Handcrafted meta-features counterexample over 30 runs, with 50 iterations Left: Mean of
the maximum observed f target so far (including any initialisation). Right: Mean of the similarity
measure kp(ψ(Di), ψ(Dtarget)) for distGP, the target task uses the same generative process as i = 2.

with ψ(D) as the selection of 13 handcrafted meta-features; 2) multiBO, i.e. multiGP [Swersky
et al., 2013] and multiBLR [Perrone et al., 2018] where no meta-information is used, i.e. task is
simply encoded by its index (they are initialised with 1 random iteration); 3) initBO [Feurer et al.,
2015] with plain Bayesian optimisation, but warm-started with the top 3 hyperparameters, from
the three most similar source tasks, computing the similarity with the `2 distance on handcrafted
meta-features; 4) noneBO denoting the plain Bayesian optimisation [Snoek et al., 2012], with no
previous task information; 5) RS denoting the random search. In all cases, both GP and BLR versions
are considered.

We use TensorFlow [Abadi et al.] for implementation, repeating each experiment 30 times, either
through re-sampling or re-splitting the train/test partition. For testing, we use the same number of
samples si for toy data, while using a 60-40 train-test split for real data. We take the embedding
batch-size7 b = 1000, and learning rate for ADAM to be 0.005. To obtain {θik, zik}

Ni

k=1 for source
task i, we use noneGP to simulate a realistic scenario. Additional details on these baselines and
implementation can be found in Appendix B and C, with additional toy (non-similar source tasks
scenario) and real life (Parkinson’s dataset) experiments to be found in Appendix C.4 and C.5.

5.1 Toy example.

To understand the various characteristics of the different methodologies, we first consider an "unsu-
pervised" toy 1-dimensional example, where the dataset Di follows the generative process for some
fixed γi: µi ∼ N (γi, 1); {xi`}

si
`=1|µi

i.i.d.∼ N (µi, 1). We can think of µi as the (unobserved) relevant
property varying across tasks, and the unlabelled dataset as Di = {xi`}

si
`=1. Here, we will consider

the objective f given by:

f(θ;Di) = exp

(
−

(θ − 1
si

∑si
`=1 x

i
`)

2

2

)
,

where θ ∈ [−8, 8] plays the role of a ‘hyperparameter’ that we would like to select. Here, the optimal
choice for task i is θ = 1

si

∑si
`=1 x

i
` and hence it is varying together with the underlying mean µi of

the sampling distribution. An illustration of this experiment can be found in Figure 6 in Appendix
C.2. We now perform an experiment with n = 15, and si = 500, for all i, and generate 3 source
tasks with γi = 0, and 12 source task with γi = 4. In addition, we generate an additional target
dataset with γtarget = 0 and let the number of source evaluations per task be Ni = 30.

The results can be found in Figure 1. Here, we observe that distBO has correctly learnt to utilise the
appropriate source tasks, and is able to few-shot the optimum. This is also evident on the right of

7Training time is less than 2 minutes on a standard 2.60GHz single-core CPU in all experiments.
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Figure 1, which shows the similarity measure kp(ψ(Di), ψ(Dtarget)) ∈ [0, 1] for distGP. The feature
representation has correctly learned to place high similarity on the three source datasets sharing the
same γi and hence having similar values of µi, while placing low similarity on the other source
datasets. As expected, manualBO also few-shots the optimum here since the mean meta-feature
which directly reveals the optimal hyperparameter was explicitly encoded in the hand-crafted ones.
initBO starts reasonably well, but converges slowly, since the optimal hyperparameters even in the
similar source tasks are not the same as that of the target task. It is also notable that multiBO is
unable to few-shot the optimum, as it does not make use of any meta-information, hence needing
initialisations from the target task to even begin learning the similarity across tasks. This is especially
highlighted in Figure 8 in Appendix C.2, which shows an incorrect similarity in the first few
iterations. Significance is shown in the mean rank graph found in Figure 7 in Appendix C.2.

5.2 When handcrafted meta-features fail.

We now demonstrate an example in which using handcrafted meta-features does not capture any
information about the optimal hyperparameters of the target task. Consider the following process for
dataset i with xi` ∈ R6 and yi` ∈ R, given by:[

xi`
]
j

i.i.d.∼ N (0, 22), j = 1, . . . , 6,[
xi`
]
i+2

= sign([xi`]1[xi`]2)
∣∣[xi`]i+2

∣∣ , (1)

yi` = log

1 +

 ∏
j∈{1,2,i+2}

[xi`]j

3
+ εi`.

where εi`
iid∼ N (0, 0.52), with index i, `, j denoting task, sample and dimension, respectively: i =

1, . . . , 4 and ` = 1, . . . , si with sample size si = 5000. Thus across n = 4 source tasks, we have
constructed regression problems, where the dimensions which are relevant (namely 1, 2 and i+ 2)
are varying. Note that (1) introduces a three-variable interaction in the relevant dimensions, but
that all dimensions remain pairwise independent and identically distributed. Thus, while these
tasks are inherently different, this difference is invisible by considering marginal distribution of
covariates and their pairwise relationships such as covariances. As the handcrafted meta-features for
manualBO only consider statistics which process one or two dimensions at the time or landmarkers
[Pfahringer et al.], their corresponding ψ(Di) are invariant to tasks up to sampling variations. For an
in-depth discussion, see Appendix C.3. We now generate an additional target dataset, using the same
generative process as i = 2, and let f be the coefficient of determinant (R2) on the test set resulting
from an automatic relevance determination (ARD) kernel ridge regression with hyperparameters α
and σ1, . . . , σ6. Here α denotes the regularisation parameter, while σj denotes the kernel bandwidth
for dimension j. Setting Ni = 125, the results can be found in Figure 2 (GP) and Figure 9 in
Appendix C.3 (BLR). It is clear that while distBO is able to learn a high similarity to the correct
source task (as shown in Figure 2), and one-shot the optimum, this is not the case for any of the
other baselines (Figure 10 in Appendix C.3) . In fact, as manualBO’s meta-features do not include
any useful meta-information, they essentially encode the task index, and hence perform similarly
to multiBO. Further, we observe that initBO has slow convergence after warm-starting. This is not
surprising as initBO has to ‘re-explore’ the hyperparameter space as it only uses a subset of previous
evaluations. This highlights the importance of using all evaluations from all source tasks, even if they
are sub-optimal. In Figure 9 in Appendix C.3, we show significance using a mean rank graph and
that the BLR methods performs similarly to their GP counterparts.

5.3 Classification: Protein dataset.

The Protein dataset consists of 7 different proteins extracted from Gaulton et al. [2016]: ADAM17,
AKT1, BRAF, COX1, FXA, GR, VEGFR2. Each protein dataset contains 1037− 4434 molecules
(data-points si), where each molecule has binary features xi` ∈ R166 computed using a chemical
fingerprint (MACCs Keys8). The label per molecule is whether the molecule can bind to the

8http://rdkit.org/docs/source/rdkit.Chem.MACCSkeys.html
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Figure 3: Each evaluation is the maximum observed accuracy rate averaged over 140 runs, with 20
runs on each of the protein as target. Left: Jaccard kernel C-SVM. Right: Random forest

protein target ∈ {0, 1}. In this experiment, we can treat each protein as a separate classification
task. We consider two classification methods: Jaccard kernel C-SVM Bouchard et al. [2013],
Ralaivola et al. [2005] (commonly used for binary data, with hyperparameter C), and random forest
(with hyperparameters n_trees, max_depth, min_samples_split, min_samples_leaf ), with the
corresponding objective f for each given by accuracy rate on the test set. In this experiment, we
will designate each protein as the target task, while using the other n = 6 proteins as source tasks.
In particular, we will take Ni = 20 and hence N = 120. The results obtained by averaging over
different proteins as the target task (20 runs per task) are shown in Figure 3 (with mean rank graphs
and BLR version to be found in Figure 14 and 15 in Appendix C.6). On this dataset, we observe
that distGP outperforms its counterpart baselines and few-shots the optimum for both algorithms. In
addition, we can see a slower convergence for the multiGP and initGP, demonstrating the usefulness
of meta information in this context.

6 Conclusion

We demonstrated that it is possible to borrow strength between multiple hyperparameter learning
tasks by making use of the similarity between training datasets used in those tasks. This helped us to
develop a method which finds a favourable setting of hyperparameters in only a few evaluations of the
target objective. We argue that the model performance should not be treated as a black box function
as it corresponds to specific known models and specific datasets and that its careful consideration as a
function of all its inputs, and not just of its hyperparameters, can lead to useful algorithms.
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A Additional details for methodology

A.1 Gaussian process (distGP)

For distGP, we have the following model:

f ∼ GP (µ,C)

z|γ i.i.d.∼ N (f(γ), σ2)

where here µ is taken to be a constant and C is the corresponding covariance function. In this case,

the log marginal likelihood with observations Γ =
{
{(θik,PiXY , si), zik}

Ni

k=1

}n
i=1

, following standard
GP literature [Rasmussen, 2004] is given by:

log(p(z|Γ)) = −1

2
(z− µ)>(K + σ2I)−1(z− µ)− 1

2
log |K + σ2I| − N

2
log(2π)

where z = [z1
1 , . . . z

n
Nn

]>,N =
∑
iNi andK is the kernel matrix, withKij = C(γi, γj). Here γi, γj

denotes elements of Γ. In particular, for a new observation γ∗, the predictive posterior distribution
fpost(γ

∗) ∼ N (µpost(γ
∗), σ2

post(γ
∗)), where:

µpost(γ
∗) = µ+Kγ∗Γ(K + σ2I)−1(z− µ)

σ2
post(γ

∗) = Kγ∗γ∗ −Kγ∗Γ(K + σ2I)−1K>γ∗Γ

where here Kγ∗γ∗ = C(γ∗, γ∗) and Kγ∗Γ = [C(γ∗, γ1), . . . , C(γ∗, γN )].

A.2 Bayesian Linear Regression (distBLR)

z|β i.i.d.∼ N (Υβ, σ2I) β ∼ N (0, αI)

where Υ = [υ([θ1
1, ψ(D1), s1]), . . . , υ([θnNn

, ψ(Dn), sn])]> ∈ RN×d and α > 0 denotes the prior
regularisation. Here υ denotes a feature map of dimension d on concatenated hyperparameters θ,
data embedding ψ(D) and sample size s. Following [Bishop, 2006, Perrone et al., 2018], defining
Kdim = Id + α

σ2 Υ>Υ, and L as the cholesky factor of Kdim, i.e. Kdim = LL>, the log marginal

likelihood (up to additive constants) with observations Γ =
{
{(θik,PiXY , si), zik}

Ni

k=1

}n
i=1

is given
by:

log(p(z|Γ)) =
1

2σ2
(
α

σ2
||e||2 − ||z||2)−

d∑
i=1

log(Lii)−
N

2
log(σ2)

where e = L−1Υ>z. In this case, for a given υ∗ ∈ Rd×1, the transformed feature map of a particular
instance of γ∗, the predictive posterior distribution β>υ∗ = fpost(γ

∗) ∼ N (µpost(γ
∗), σ2

post(γ
∗)),

where:

µpost(γ
∗) =

α

σ2
e>L−1υ∗

σ2
post(γ

∗) = α||L−1υ∗||2

It is noted that the computational complexity here scales linearly in the number of observations N
and cubically in d.

A.3 Warm-starting, acquisition functions and multi-task extension

The lower confidence bound (LCB) [Srinivas et al., 2009] is defined as follows:

αLCB(γ; fpost) = µpost(γ)− κ ∗ σpost(γ)

where κ denotes the level of exploration, and for experiments we set κ = 2.58, as we would like to
exploit the information from other tasks on our first iteration. It should be noted that this is not the
upper confidence bound commonly used, as we would like to penalise uncertainty on the first iteration.
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The expected improvement (EI) [Močkus, 1975] is defined as follows:
g(γ) = (µpost(γ)− zmax − ξ)/σpost(γ)

αEI(γ; fpost) = σpost(γ)(g(γ)Φcdf(g(γ)) +N (g(γ); 0, 1)

where here zmax refers to the maximum observed z for our target task, while Φcdf and N (g(γ); 0, 1)
refers to the CDF and pdf of a standard Normal distribution. For experiments, we set the exploration
parameter to be ξ = 0.01. It should be noted in the case, where the αEI = 0 (or numerically
close to 0) for all attempted locations, we will use the upper confidence bound (with κ = 2.58)
[Srinivas et al., 2009] instead. To maximise the acquisition function, we first randomly select 300, 000
hyperparameters for evaluation (computationally cheap), to find the top 10 optimum. Initialising
from these top 10 hyperparameters, a L-BFGS-B algorithm (computationally expensive) is used to
maximise the acquisition function, to select the next hyperparameter for evaluation.

Warm-starting Instead of using the LCB acquisition function (for the first evaluation), an alter-
native approach is to warm-start [Gomes et al., 2012, Reif et al., 2012, Feurer et al., 2015] based
on learnt similarities with previous source tasks. For the GP case, we will optimise the marginal
likelihood based on all observations from the source tasks, learning the task similarity function
kp([ψ(Di), si], [ψ(Dj), sj ]). As the output domain of kp lies in [0, 1], we can compute the top M
source tasks most similar with our target task. Given this selection, we can extract the best m
previous best hyperparameters from each of these source tasks, enabling Mm hyperparameters as
warm-start initialisations for our algorithm. For the BLR case, as a joint space over θ, ψ(D) and s
is considered, a direct task similarity function is no longer available. Instead we opt for a different
approach and extract m previous best hyperparameters from all source tasks, and consider only these
hyperparameters for the maximisation of the LCB/EI acquisition function. In practice, we recommend
to warm-start with as few evaluations as possible, as:

• Source tasks can be dissimilar to our target task.
• Warm-start hyperparameters may be similar to each other, and hence costly evaluations are

either wasted or inefficient.
• More evaluations are needed before the proposed algorithm can begin to utilise all seen

evaluations to explore/exploit for our target task.

B Baselines

B.1 manualBO

Instead of constructing ψ(D), as described in section 4, we can select ψ(D) to be a selection of
handcrafted meta-features. Here, we provide the set of meta-features we used for experiments.
It should be noted that features of Xi = {xi`}

si
`=1 is standardised to have mean 0 and variance 1

individually (except for the unsupervised toy example case, in which we encode the mean meta-feature
explicitly), while yi` is normalised to be in [0, 1] for regression. To ensure fair relative comparisons,
meta-features are normalised to be in [0, 1] across all tasks [Bardenet et al., 2013]. We do not include
sample size si, as these are already encoded separately.

General meta-features

• Skewness, kurtosis [Michie et al., 1994]: these are calculated on each feature of the dataset
Xi, before the minimum, maximum, mean and standard deviation of the computed quantities
is extracted across the features.

• Correlation, covariance [Michie et al., 1994]: these are calculated on every pair of features
of Xi, before the minimum, maximum, mean and standard deviation of the computed
quantities is extracted across each pair of features.

• PCA skewness, kurtosis [Feurer et al., 2014]: principal component analysis (PCA) is
performed onXi, andXi is projected onto the first principal component. The corresponding
skewness and kurtosis is computed.

• Intrinsic dimensionality [Bardenet et al., 2013]: number of principal components to explain
95% of variance.
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Classification specific meta-features

• Class ratios, entropy [Michie et al., 1994]: empirical class distribution and its corresponding
entropy.

• Classification landmarkers [Pfahringer et al.]: 1-nearest-neighbour classifier, linear discrimi-
nant analysis, naive Bayes and decision tree classifier.

Regression specific meta-features

• Mean, standard deviation, skewness, kurtosis of the labels {yi`}
si
`=1 [Michie et al., 1994].

• Regression landmarkers [Pfahringer et al.]: 1-nearest-neighbour regressor, linear regression
and decision tree regressor.

The landmarkers are scalable algorithms that are cheap to run, and provide us various characteristic
of the machine learning task. The corresponding meta-feature from these landmarkers is the accuracy
on an independent set of data (a train-test split is done on Xi, the training data). In experiments, we
use the default settings in sklearn [Pedregosa et al., 2011] for these algorithms. For additional details
on their formulation and rationale, please refer to [Hutter et al., 2019, Ch.2].

B.2 multiBO

Instead of using meta-features, we may wish to simply encode the task index, and learn task

similarities based on only
{
{θik, zik}

Ni

k=1

}n
i=1

. It should be noted that in both these cases, we
do not encode any sample size or class ratio information and initial evaluations from the target task is
required.

multiGP For the GP case, we will follow [Swersky et al., 2013], who considers a multi-task GP for
Bayesian optimisation. Instead of using the kernel kp on meta-features, we will now replace it by a
kernel on tasks kt. Given the n+1 total number of tasks (including the target task), the task similarity
matrix is given by St = LtL

T
t ∈ Rn+1×n+1, where Lt is a learnt cholesky factor. Expanding St into

the appropriate sized kernel Kt ∈ RN×N (as we have repeated observations from the same task),
using the marginal likelihood, we can learn the lower triangular elements of Lt. Similar to [Swersky
et al., 2013], we assume positive correlation amongst tasks and restrict positivity in the elements of
the cholesky factor.

multiBLR For the BLR case, we will follow [Perrone et al., 2018] and consider a one-hot encoding
for ψ(Di). This representation essentially identifies a separate encoding for every task, and similarity
between tasks (and hyperparameters) is captured through the transformation υ (without sample size
si), which we learn using the marginal likelihood.

B.3 initBO

For this baseline, we will employ the handcrafted meta-features as described in Appendix B.1 to
warm-start Bayesian optimisation, using a GP or BLR. In particular, we first define the number of
evaluations m per task and the number of tasks M we wish to warm-start with (i.e. Mm number
of warm-start hyperparameters). To define a similarity function, for a fair comparison with existing
literature, we will use the `2 norm [Feurer et al., 2015] between the datasets’ meta-features:

k(Di, Dj) = −|| [ψ(Di), si]− [ψ(Dj), sj ] ||2

where here k is a similarity function, and ψ(Di) is the handcrafted meta-features representation
for task i. It should also be noted that as meta-features are individually normalised to be in [0, 1],
no particular meta-feature is emphasised in this distance measure. To obtain the warm-start θs,
we compute k(Dtarget, Dj) for all j = 1, . . . , n and extract the M tasks with highest similarity.
Given these M tasks, we extract the m best performing hyperparameters from each of these task to
obtain Mm warm-start hyperparameters. These hyperparameters will then be used for warm-starting
noneGP or noneBLR (instead of random evaluations).
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C Experiments

With the exception of the hyperparameter in the unsupervised toy and the protein random forest
example, all other hyperparameters are optimised in the log-scale. In addition, we standardise
hyperparameters to have mean 0 and variance 1, when passing them to the GP and BLR, to ensure
parameters initialisation are well-defined. Here we provide additional details for our experiments in
section 5.

C.1 Comparison between joint and concatenation embeddings for regression

Here we display additional graphs comparing the embedding of the joint distribution versus the
embedding of the conditional distribution and marginal distribution before concatenation. We denote
these correspondingly by distGP-joint, distBLR-joint and distGP-concat, distGP-concat. Overall, we
observe that their performance is similar.

Figure 4: Manual meta-features counterexample with 50 iterations (including any initialisation).
Here, BLR methods are displayed on the top, while GP methods are displayed on the bottom. Each
evaluation here is averaged over 30 runs. Left: Maximum observed R2. Right: Mean rank (with
respect to each run) of the different methodologies, with ±1 sample standard deviation.
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Figure 5: Parkinson’s experiment with 17 iterations (including any initialisation). Each evaluation
here is averaged over 420 runs, with each of the 42 patient set as the target task (repeated for 10
runs) Left: Maximum observed R2. Right: Mean rank (with respect to each run) of the different
methodologies, with ±1 sample standard deviation.

C.2 Unsupervised toy example

Hyperparameters: θ ∈ [−8, 8]
Source task’s random and BO iterations: 10, 20
Target task’s noneBO random and BO iterations: 5, 10
An illustration of this toy example can be seen in figure 6.

Figure 6: Illustration of unsupervised toy example.
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Figure 7: Unsupervised toy task with 15 iterations (including any initialisation). Each evaluation here
is averaged over 30 runs. Left: Maximum observed f target. Right: Mean rank (with respect to each
run) of the different methodologies, with ±1 sample standard deviation.

Figure 8: Mean of the similarity measure kp(ψ(Di), ψ(Dtarget)) over 30 runs versus number of
iterations for the unsupervised toy task. For clarity purposes, the legend only shows the µi for the 3
source tasks that are similar to the target task with µi = −0.25. It is noted the rest of the source task
have µi ≈ 4. Left: distGP Middle: manualGP Right: multiGP

C.3 Regression: handcrafted meta-features counterexample

Hyperparameters: α ∈ [10.0−8, 0.1], σj ∈ [2.0−7, 2.05]
Source task’s random and BO iterations: 50, 75
Target task’s noneBO random and BO iterations: 20, 30

For task i = 1, . . . 4, we have the process:[
xi`
]
j
∼ N (0, 22) j = 1, . . . , 6[

xi`
]
i+2

= sign([xi`]1[xi`]2)
∣∣[xi`]i+2

∣∣
yi` = log

1 +

 ∏
j∈{1,2,i+2}

[xi`]j

3
+ εi`

where εi`
iid∼ N (0, 0.52), with index i, `, j denoting task, sample and dimension. For each task i, the

dimension of importance is 1, 2 and i+ 2, while the rest is nuisance variables. We now demonstrate
that the handcrafted meta-features for regression in Appendix B.1 do not differ across the tasks (when
noise is not considered). Firstly, it is noted that

[
xi`
]
i+2
∼ N (0, 22) even after alteration. This then
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implies that meta-features measuring skewness and kurtosis per dimension does not change across
tasks. Similarly, any PCA meta-features will remain the same, as variances remains the same in
all directions. Further, as

[
xi`
]
i+2

remains independent to
[
xi`
]
j

for j 6= k, meta-features based
on correlation and covariance will remain to be 0 for all pairs of features. Lastly, for regression
landmarkers and labels, as these are not perturbed by permutation of the features of the dataset, the
regression specific meta-features also remains the same. Together, this implies that the handcraft
meta-features are unable to distinguish which source task is similar to the target task (with the same
process as i = 2). However, as we have additional noise samples for each task, the computed
representation ψ(Di) still differs amongst all the tasks, hence the specific task can still be recognised.

Figure 9: Manual meta-features counterexample with 50 iterations (including any initialisation).
Here, GP methods are displayed on the left, while BLR methods are displayed on the right. Each
evaluation here is averaged over 30 runs. Top row: Maximum observed R2. Bottom row: Mean
rank (with respect to each run) of the different methodologies, with ±1 sample standard deviation.
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Figure 10: Mean of the similarity measure kp(ψ(Di), ψ(Dtarget)) over 30 runs versus number of
iterations for the manuak meta-features counterexample. The target task uses the same generative
process as i = 2. Left: distGP Middle: manualGP Right: multiGP

C.4 Classification: similar and not similar source tasks

Hyperparameters: C ∈ [2.0−7, 2.010], σj ∈ [2.0−3, 2.05]
Source task’s random and BO iterations: 75, 75
Target task’s noneBO random and BO iterations: 25, 75

Figure 11: Classification task experiment A with 100 iterations (including any initialisation). Here,
the target task is similar to one of the source task. Each evaluation here is averaged over 30 runs. Left:
Maximum observed AUC. Right: Mean rank (with respect to each run) of the different methodologies,
with ±1 sample standard deviation.

We now demonstrate a classification example, where we contrast the case where some of the source
tasks is similar to the target tasks against the case where no such source task exists to illustrate
that encoding meta-information need not always be beneficial. Here, we let the number of source
tasks n = 10, si = 5000 and f to be the AUC on the test set for ARD kernel logistic regression,
with hyperparameters C and σ1, . . . , σ6. Similar to before, C denotes regularisation and σj denotes
the kernel bandwidth for dimension j. To generate Di, we take xi` ∼ N (0, I6), and obtain yi`
conditionally on xi` by sampling from a kernel logistic regression model (ARD kernel with Random
Fourier features [Rahimi and Recht, 2008] approximation) where each task has different “true”
bandwidth parameters (also different across dimensions).
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Figure 12: Classification task experiment B with 100 iterations (including any initialisation). Here
the target task is different to all the source task. Each evaluation here is averaged over 30 runs. Left:
Maximum observed AUC. Right: Mean rank (with respect to each run) of the different methodologies,
with ±1 sample standard deviation.

To be more precise, to generate {xi`, yi`}
si
`=1 for this experiment, we first simulate xi` ∼ N (0, I6).

Then in order to sample from the model of an ARD kernel logistic regression, we define an underlying
true bandwidth σ̃i = [σ̃i1, . . . , σ̃

i
6] and use random Fourier features (RFF) [Rahimi and Recht, 2008]

to approximate an ARD kernel (with D = 200 frequencies) as follows:

ϕi` =
√

2/D cos(Ux̃i` + b) U ∈ RD×6,b ∈ RD

where x̃i` = xi`/σ̃
i denotes element-wise division by the bandwidths in respective dimensions and

Umn
i.i.d.∼ N (0, 1) and bm

i.i.d.∼ Unif([0, 2π]). Letting Φi = [ϕi1, . . .ϕ
i
si ]
>, we let g̃i = Φiβi,

where βi ∼ N (0, ID). We then normalise g̃i to be in the range [−6, 6] and then transform it through
the logistic link:

pi` =
1

1 + exp(−g̃i`)
obtaining pi` = P (yi` = 1|xi`), using which we can draw a binary output yi` ∼ Bernoulli(pi`). For
the source tasks, we will randomly select σ̃ij ∈ {0.5, 1.0, 2.0, 4.0, 8.0, 16.0} with replacement across
all j, so that different dimensions are of different relative importance across different tasks. For
experiment A, we will select its underlying bandwidths to be the same as one of that in the source
task. For experiment B, to ensure that our target task has different optimal hyperparameters to the
source tasks, we will let σ̃ij = 1.5 for all j.

Note that all tasks have the same marginal distribution of covariates and that there is a high variation
in conditional distributions: they differ not only in terms of kernel bandwidths but also in terms of
coefficients in their respective regression functions. To generate a task dataset, we use the same
process, and run 2 experiments: (A) use the same set of bandwidths as one of the source tasks but
a different regression function, and (B) use a set of bandwidths unseen in any of the source tasks
(and a different regression function). We take Ni = 150 and since the total number of evaluations is
N = 1500, we focus our attention on BLR, which have O(N) linear computational complexity. The
results for the two experiments are shown in Figure 11 and 12. We see that distBLR leverages the
presence of a similar task among the sources and learns a representation of the dataset which helps
guide hyperparameter selection to the optimum faster than other methods. We note that manualBLR
converges much slower, given that the optimal hyperparameters depend on the data in a complex
way which is difficult to extract from handcrafted meta-features. We also note that initBLR performs
poorly despite the presence of a source task with the same “true” bandwidths: often, the meta-
features are not powerful enough to recognize which task is the most similar in order to initialise
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appropriately. On the other hand, in the case B, no similar source exists implying that the joint BLR
model in distBLR needs to extrapolate to the far away region in the space of joint distributions of
training data. As expected, meta-information in this example is not as helpful as in the case A and the
method that ignores it, multiBLR, in fact performs best. However, albeit worse performing, note that
distBLR and manualBLR were still able to revert to the behaviour akin to multiBLR and achieve a
faster convergence compared to their non-transfer counterparts and initBLR which essentially has to
re-explore the hyperparameter space from scratch.

C.5 Regression: Parkinson’s dataset

Hyperparameters: α ∈ [10.0−10, 0.1], σj ∈ [2.0−7, 2.05]
Source task’s random and BO iterations: 10, 20
Target task’s noneBO random and BO iterations: 9, 8

Figure 13: Parkinson’s experiment with 17 iterations (including any initialisation). Each evaluation
here is averaged over 420 runs, with each of the 42 patient set as the target task (repeated for 10
runs) Left: Maximum observed R2. Right: Mean rank (with respect to each run) of the different
methodologies, with ±1 sample standard deviation.

The Parkinson’s disease telemonitoring dataset9 consists of voice measurements using a telemon-
itoring device for 42 patients with Parkinson disease (approximately 150 recordings ∈ R17 each).
The label is the clinician’s Parkinson disease symptom score for each recording. Following a setup
similar to Blanchard et al. [2017], we can treat each patient as a separate regression task. In this
experiment, in order to allow for comprehensive benchmark comparisons, we consider f which is
not prohibitively expensive (hence the problem does not necessarily benefit computationally from
Bayesian optimisation). Namely, we employ RBF kernel ridge regression (with hyperparameters α,
γ), with f as the coefficient of determination (R2). In this experiment, we will designate each patient
as the target task, while using the other n = 41 patients as source tasks. In particular, we will take
Ni = 30, and hence N = 1230, and again since the total number of evaluations is large, will focus
on BLR. The results obtained by averaging over different patients as the target task (20 runs per task)
are shown in Figure 13. On this dataset, we observe similar behaviour of transfer methods which
were able to leverage the source task information and for many patients few-shot the optimum. This
suggests the presence of similar source tasks in practice and that this similarity can be exploited in
the context of hyperparameter learning.

9http://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

21



C.6 Classification: protein dataset

Jaccard kernel C-SVM
Hyperparameters: C ∈ [2.0−7, 2.010]
Source task’s random and BO iterations: 10, 10
Target task’s noneBO random and BO iterations: 9, 11

To compute the Jaccard kernel Bouchard et al. [2013], Ralaivola et al. [2005], we use of the python
package SciPy10 Jones et al. [2001–] to compute the Jaccard distance, before performing a one
subtract each entry to get a similarity matrix. Results are shown in Figure 14.

Figure 14: Protein dataset with Jaccard kernel C-SVM. Each evaluation here is averaged over 140
runs, with each of the 7 protein set as the target task (20 runs each). GP methods are displayed on
the left, while BLR methods are displayed on the right. Top row: Maximum observed classification
accuracy (%). Bottom row: Mean rank (with respect to each run) of the different methodologies,
with ±1 sample standard deviation.

10https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
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Random Forest
Hyperparameters:
Number of trees: n_trees ∈ {1, . . . , 200}
Max depth of the tree: max_depth ∈ {1, . . . , 32}
Min samples required to split a node (after multiplied with si): min_samples_split ∈ [0.01, 1.0]
Min samples required at a leaf node (after multiplied with si): min_samples_leaf ∈ [0.01, 0.5]

Source task’s random and BO iterations: 10, 10
Target task’s noneBO random and BO iterations: 9, 11

Since n_trees and max_depth are discrete hyperparameters, in practice we round up to the nearest
integer, after a continuous version of it is proposed. For additional information on these hyperparam-
eters, please refer to the RandomForestClassifier11 in the Python package scikit-learn Pedregosa et al.
[2011]. Results are shown in Figure 15.

Figure 15: Protein dataset with random forest. Each evaluation here is averaged over 140 runs, with
each of the 7 protein set as the target task (20 runs each). GP methods are displayed on the left, while
BLR methods are displayed on the right. Top row: Maximum observed classification accuracy (%).
Bottom row: Mean rank (with respect to each run) of the different methodologies, with ±1 sample
standard deviation.

11https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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